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[1] The interplay between regions of high and low hydraulic conductivity, degree of
aquifer stratification, and rate-dependent geochemical reactions in heterogeneous flow
fields is investigated, focusing on impacts of kinetic sorption and local dispersion on plume
retardation and channeling. Human health risk is used as an endpoint for comparison via a
nested Monte Carlo scheme, explicitly considering joint uncertainty and variability. Kinetic
sorption is simulated with finely resolved, large-scale domains to identify hydrogeologic
conditions where reactions are either rate limited (nonreactive), in equilibrium (linear
equilibrium assumption is appropriate), or are sensitive to time-dependent kinetic reactions.
By utilizing stochastic ensembles, effective equilibrium conditions are examined, in
addition to parameter interplay. In particular, the effects of preferential flow pathways and
solute mixing at the field-scale (marcrodispersion) and subgrid (local dispersion, LD) are
examined for varying degrees of stratification and regional groundwater velocities (v).
Results show effective reaction rates of kinetic ensembles with the inclusion of LD yield
disequilibrium transport, even for averaged (or global) Damköholer numbers associated
with equilibrium transport. Solute behavior includes an additive tailing effect, a retarded
peak time, and results in an increased cancer risk. The inclusion of LD for nonreactive
solutes in highly anisotropic media results in either induced solute retardation or
acceleration, a new finding given that LD has previously been shown to affect only the
concentration variance. The distribution, magnitude, and associated uncertainty of cancer
risk are controlled by the up scaling of these small-scale processes, but are strongly
dependent on v and the source term.
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1. Introduction
[2] Correctly identifying point values of a contaminant

plume (i.e., at a well) is critical to accurately calculate
human health risk because groundwater concentrations are
often directly used as exposure values to assess risk. The
importance of fundamental groundwater flow and transport
processes in risk assessment has been demonstrated in mul-
tiple studies, but with varying methods. For example, risk
assessments in which health risk is calculated with human
exposure [e.g., Andri�cević et al., 1994; Hassan et al.,
2001; Tartakovsky, 2007; Bolster and Tartakovsky, 2008],
or conversely when human exposure is not calculated, and
risk is defined as exceeding a threshold concentration such
as a maximum contaminant level (MCL) or the risk of

system failure [e.g., Bolster et al., 2009; Fernandez-Garcia
et al., 2012]. Probabilistic approaches have also been used
[e.g., Andri�cević, 1996; de Barros and Rubin, 2008],
including a subset of probabilistic approaches which utilize
a rigorous treatment of risk via uncertainty and variability
methods [e.g., Maxwell et al., 1999; Smalley et al., 2000;
Benekos et al., 2007; Maxwell et al., 2008; de Barros
et al., 2009; Siirila et al., 2012]. Maxwell and Kastenberg
[1999] found sorption mechanisms’ influence on human
health risk is small given intermediate and long exposure
durations. Most recently, the influence of a contaminant’s
sorptive capacity was found to be a controlling factor in
determining if risk exceeded United States Environmental
Protection Agency (EPA) remediation action levels (RAL)
[Siirila et al., 2012]. Under an exposure duration of 30
years, differing degrees of instantaneous equilibrium sorp-
tion (referred to here as the local equilibrium assumption,
LEA) yielded differing probabilities of an individual incur-
ring cancer over a lifetime and/or experiencing an adverse
health effect, where values of predicted risk varied by over
an order of magnitude. Additionally, field and laboratory
observations show nonideal or kinetic behavior of reactive
solutes [e.g., Pickens et al., 1981; Roberts et al., 1986], sug-
gesting the use of LEA in contaminant transport studies
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may be problematic for accurately quantifying human
health risk. This discrepancy and the finding of Siirila et al.
[2012] which shows the importance of sorption mechanisms
in assessing risk warrants further analysis of the assumption
of LEA in risk assessment, and to identify the constraints of
predictive tools to estimate when LEA is appropriate (for
example, the Damköhler number as discussed in section
2.2.1).

[3] Deviations from LEA and the effects of kinetically
sorbing solutes have been extensively studied in the past
[Jennings, 1984; Valocchi, 1985; Bahr and Rubin, 1987;
Valocchi, 1988; Valocchi, 1989; Valocchi and Quinodoz,
1989; Cvetkovic and Shapiro, 1990; Andri�cević and
Foufoula-Georgiou, 1991; Selroos and Cvetkovic, 1992;
Dagan and Cvetkovic, 1993; Cvetkovic and Dagan, 1994;
Selroos and Cvetkovic, 1994; Miralles-Wilhelm and Gel-
har, 1996; Espinoza and Valocchi, 1997; Fiori and Bellin,
1999; Mishra et al., 1999; Michalak and Kitanidis, 2000;
Fiori et al., 2002] but not in the context of human health
risk assessment. The majority of these studies derive or uti-
lize analytical solutions that do not explicitly simulate well
capture which is often necessary in predicting groundwater
contamination and risk scenarios. Additionally, first-order
analytical solutions are generally not valid at large varian-
ces of hydraulic conductivity, K [m d�1] [Chin and Wang,
1992; Selroos and Cvetkovic, 1992; Selroos, 1995; Salan-
din and Fiorotto, 1998]. While higher-order solutions exist,
here we choose to use a numerical approach to allow for
more flexibility in the level of problem complexity and the
treatment of simplifying assumptions normally used in ana-
lytical solutions.

[4] The numerical framework utilized in this study is
stochastic, where risk derived from groundwater well con-
centrations in three-dimensional heterogeneous media is
assessed probabilistically. Specifically we investigate the
effect of kinetically sorbing solutes in highly stratified
aquifers, a topic addressed in the early literature for more
simplified heterogeneous domains [Valocchi, 1988; Valoc-
chi, 1989; Cvetkovic and Shapiro, 1990; Andri�cević and
Foufoula-Georgiou, 1991]. Here we use stratified domains
to assess realistic far-field groundwater contamination sce-
narios where variations in sedimentology and stratigraphy
are dominant factors in determining contaminant flow and
transport. Stratified aquifers are often associated with non-
ergodic transport [Sánchez-Vila and Sol�ıs-Delf�ın, 1999], or
when the ensemble statistics do not coincide with the corre-
sponding spatial averages calculated over a single realiza-
tion [Christakos, 1992]. If the source dimensions are small
with respect to the integral scale, highly stratified (i.e.,
highly anisotropic) aquifers have a higher uncertainty asso-
ciated with the location of the plume center of mass and
plume spreading. The stratified aquifer is also of interest
because (1) the stratigraphy of many natural formations are
highly anisotropic [see e.g., Rubin, 2003, Table 2.1] and (2)
interconnected pathways are much more prevalent, where
channeling of solutes through areas of higher hydraulic
conductivity effectively decreases the overall effect of
macrodispersion [Siirila et al., 2012]. The importance of
preferential flow paths was recently observed at the Macro-
dispersion Experiment (MADE) site, where highly asym-
metric breakthrough curves suggest transport connectivity
and where 43%–69% of particle paths are located within

the high hydraulic conductivity zones [Bianchi et al.,
2011]. This study, however, only examines a small region
of the aquifer (where domain size in x, y, and z directions
are xd ¼ 4, yd ¼ 4, zd ¼ 6 [m], respectively) ; it is one of
the objectives of the current study to investigate how the
effects of connectivity zones over short (i.e., meter scale)
effect connectivity over larger distances (i.e., kilometer
scale). This objective is achieved by up scaling aquifers of
similar hydraulic composition (i.e., according to similar
correlation lengths of [Rehfeldt et al., 1992]) to the kilome-
ter scale.

[5] In the present analysis, a case study (see section 3) is
used to simulate an example contamination scenario
involving mobilized arsenic, an aqueous contaminant that
will sorb to mineral surfaces. Multiple ensembles (each
composed of 200 realizations) of large extent, highly
resolved, regional-scale aquifers are simulated with flow
and transport codes through the use of parallel high-per-
formance computing. Well elution breakthrough curves and
time-dependent kinetic sorption are explicitly accounted for
in this process. Because the methodology is numerical, high
variances of Y ¼ ln(K) [m d�1] are also explored. Both the
validity and predictability of LEA is investigated by sto-
chastically simulating ensembles of both linear and kinetic
sorption scenarios that should theoretically retard the solute
equally if equilibrium is an appropriate assumption. An
investigation of potential interplay (positive or negative
feedbacks) between multiple hydrogeologic parameters is
conducted for both kinetic and LEA ensembles. In particu-
lar, the effect of preferential flow pathways and solute mix-
ing on the field-scale (marcrodispersion) and subgrid (local
dispersion) is examined by a comparison of normalized well
breakthrough curves and peak times for varying degrees of
stratified, heterogeneous flow fields. Finally, carcinogenic
human health risk is used as an endpoint of comparison by
utilizing a risk methodology previously developed [Maxwell
and Kastenberg, 1999; Siirila et al., 2012]. Risk is calcu-
lated for a population of potentially exposed individual using
a nested Monte Carlo approach, explicitly considering uncer-
tainty in environmental parameters and variability in individ-
ual physiological and exposure parameters. These results
have implications in a wide range of groundwater contami-
nation scenarios involving reactive solutes, including but not
limited to, acid-mine drainage, CO2 leakage from Carbon
Capture and Storage (CCS), other forms of underground
waste storage, agricultural and urban runoff, disposal of
industrial wastewater, etc.

2. Methodology
[6] Following the framework of Siirila et al. [2012], far-

field groundwater flow and solute transport is modeled sto-
chastically to account for uncertainty in groundwater flow
paths. A complete set of the governing equations for (1)
flow and transport, and for (2) human health risk are
described in Appendices A and B, respectively. Section 2.1
briefly describes the creation of the heterogeneous aquifer,
also consistent with the methodology previously presented
by Siirila and coauthors. Section 2.2 outlines a number of
new metrics used to analyze the interplay between reactive
solutes and the hydrologic flow field. These metrics are
useful tools to understand how modeling parameters affect
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groundwater flow and transport and ultimately how they
affect risk assessment analyses.

2.1. Hydrologic Flow Field and Heterogeneity

[7] Uncertainty in hydrologic flow and subsurface prop-
erties is accounted for by the use of a stochastic Monte
Carlo scheme where multiple realizations of equally prob-
able heterogeneous subsurface domains are simulated, all
honoring the same global statistics. Although equally
likely, each realization randomly simulates distinctly dif-
ferent hydraulic conductivity (K) [m d�1] fields based
on the geostatistical descriptors geometric mean (Kg)
[m d�1] and variance (�2

Y ) [-] of K. An exponential corre-
lation model is used to define spatial correlation of K
via a separation distance (�) [m] and correlation lengths
in the horizontal and vertical directions (�h, �v, respec-
tively) [m]:

Rð�Þ ¼ �2exp��=�h;v : (1)

In this study, the magnitude of �h is used to describe the
degree of aquifer stratification and is a principal parameter
investigated in the sensitivity analysis of the case study.
The degree of stratification is discussed in terms of the sta-
tistical anisotropy ratio, " [-], equivalent to the ratio of ver-
tical and horizontal correlation lengths (" ¼ �v/�h), and
referred to hereafter as the anisotropy ratio. A very strati-
fied formation is equivalent to " � 1. This process yields
realizations of flow dictated by the head gradient and spa-
tially correlated random K field which together comprise an
ensemble of equally likely flow scenarios. By varying pa-
rameters such as " and the regional groundwater velocity
(v [m d�1], see equation (A3)), multiple ensembles can be
cross compared.

2.2. Transport of Sorbing Solutes

[8] Realizations of the flow field described in section 2.1
are linked to a solute transport model to simulate plume
migration from a fixed source location. By linking flow
field realizations with transport, ensembles of constant
global statistics of flow and transport properties can be
investigated. Sensitivity to these hydraulic properties is
explored by generating multiple ensembles of varying hy-
draulic properties and analyzing the statistical outcome of
an endpoint measured in the solute transport model (i.e.,
concentration at a well).

[9] Nonreactive (i.e., tracer), LEA, and first-order ki-
netic particle simulations are conducted. LEA simulations
utilize the partition coefficient (KD) [L kg�1], defined as
the slope of sorption isotherm relating the aqueous concen-
tration in solution (C) [mg kg�1] to the sorbed concentra-
tion in the solid phase (C�) [mg m�3]. Kinetic simulations
utilize time-dependent forward (kf) [L d�1] and reverse (kr)
[kg d�1] rates with an equivalent ratio to the partition
coefficient :

KD ¼
kf

kr
¼ C�

C
: (2)

All sorption parameters (KD, kf, kr) are constant in space
and time. Here the retardation (R) [-] of the solute is

directly related to KD for LEA simulations and the ratio
(kf/kr) for kinetic simulations, where

RLEA ¼ 1þ �bKD

�
; (3)

Rkin ¼ 1þ �bkf

�kr
; (4)

where and � [-] is porosity and �b [kg m�3] is the bulk den-
sity of the porous medium. A stochastic element was added
to the Lagrangian particle tracking model SLIM-FAST to
rapidly and efficiently simulate the time dependence asso-
ciated with kinetic sorption. This technique builds on previ-
ous approaches to decrease simulation time and improve
computational efficiency [Keller and Giddings, 1960;
Valocchi and Quinodoz, 1989; Andri�cević and Foufoula-
Georgiou, 1991; Tompson and Dougherty, 1992; Quinodoz
and Valocchi, 1993; Michalak and Kitanidis, 2000;
Maxwell et al., 2007]. When kf and kr rates are slow, reac-
tion times are large and the particle displacements are small
within a given advection time tadv [day], and result in long
waiting times [e.g., Valocchi and Quinodoz, 1989]. Rather
than explicitly simulating phase transfer between the po-
rous media and solution, aqueous and sorbed times
(taq [day] and ts [day], respectively) during one tadv are
monitored. taq and ts are scaled by kf and kr, in addition to a
random number within a normal distribution (RN) :

taq ¼
RN

kf
; (5)

ts ¼
RN

kr
: (6)

When the sum of taq and ts exceed the tadv, ts is then added
to the continuously running particle time (tparticle) [day].
This process is computed for each particle, p, for each
advection step:

Given taq;p þ ts;p > tadv;p

tp ¼ tp þ ts;p
: (7)

In other words, the model is continuously moving particles
according to the aqueous advection time (and therefore at a
faster simulation rate) but accounts for kinetic sorption
time by calculating a running tally of sorbed time. This pro-
cess is especially efficient when forward and reverse rates
are very fast in comparison to the groundwater velocity,
effectively decreasing simulation time by several orders of
magnitude over the approach previously used (see Maxwell
et al. [2007] supplemental material for further particle
tracking details). This approach is similar to the third of
Valocchi and Quinodoz’s [1989] methods (the ‘‘Arbitrary
Time step’’), which was found to provide the most efficient
method of simulating kinetic sorption with low simulation
times, where the computational effort is quasi-independent
of the reaction rate.

[10] Local (or subgrid) dispersion (LD) has also been
linked to sensitivity in higher-order moments (i.e., mean
solute point flux and concentration variances) [Dagan and
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Fiori, 1997; Fiori et al., 2002; Fiorotto and Caroni, 2002;
Bellin et al., 2004]. This increase in dispersion is quantified
in terms of displacement by the nondimensional Péclet
number (Pe) [-] and simplified through the relationship in
equation (A6) as:

Pe ¼ vx�h

DL
¼ �h

�L
: (8)

LD has also been found to be especially significant in
three-dimensional stratified aquifers, where given high Pe
numbers and low ", the neglect of LD may yield inaccurate
results [Bellin et al., 2004]. Fiori [1996] also had a similar
finding for " � 0.1, where both studies analyzed Pe num-
bers up to O(103 – 104). Combinations of infinite (Pe ¼ 1)
and finite (Pe =1) Péclet numbers of O(104 – 105) at low
anisotropy ratios (" � 0.1) are simulated in this case study
to examine aquifer settings where sedimentology and stra-
tigraphy are controlling factors in flow and transport.
Combinations of high Pe and low " have been briefly inves-
tigated in the literature [e.g., Indelman and Dagan, 1999]
but not previously studied in risk assessment. Even if the
aquifer is not highly stratified, Fiorotto and Caroni [2002]
argue that it is important to include LD in the field of risk
analysis where a threshold of safety is defined. A second
stress on the investigation of LD in the case of stratified do-
main is made because other processes such as molecular
diffusion and diffusive fractionation have been found to be
controlling in nonequilibrium, or poorly mixed, regimes
[LaBolle et al., 2006]. Although the fundamental process
and scales differ, LaBolle et al. [2006] found the impor-
tance of neighboring strata and hydrofacies (i.e., low and
high-K zones) to be controlling in correctly dating post-
1950, prebomb peak 3H and 3He water.

2.2.1. LEA Prediction: The Damköhler Number
[11] The assumption that solutes instantaneously reach

equilibrium is partly based on the postulation that ground-
water velocities are slow relative to the rate of reaction, but
is also widely used because of the reduction in complexity
in the mass transport model [Jennings, 1984]. As noted ear-
lier, this assumption may or may not be valid given certain
hydrologic conditions. Traditionally, the use of the dimen-
sionless Damköhler number has been used as a predictor to
distinguish when LEA or kinetic modeling is appropriate
[e.g., Jennings, 1984; Bahr and Rubin, 1987; Brusseau
and Srivastava, 1997; Espinoza and Valocchi, 1997;
Michalak and Kitanidis, 2000; Green et al., 2010].
Although there are several definitions of the ‘‘length scale’’
used in the Damköhler definition, we choose to adapt the
following, local formulation based upon the scale of the
spatial discretization:

DaLocal ¼
kf ��x

v
! ¼ kf ��xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2
z

q ; (9)

where �x [m] is the cell size parallel to groundwater flow
and v

!
[m d�1] is the cell based local velocity vector

defined by directional components within that cell : vx

[m d�1], vy [m d�1], vz [m d�1]. It is important to note
that because kf and kr rates are spatially homogeneous,
any variance in Da is attributed to fluctuations in v

!
(and

therefore Y ) alone. Likewise, we define a global estimate
of the Damköhler number as:

DaGlobal ¼
kf ��x

v
: (10)

Following the aforementioned studies examining Dam-
köhler numbers, large Da values, typically over 10.0 [-],
suggest that the LEA is appropriate because the contami-
nant will have sufficient time to sorb to the porous media
(i.e., sorption reaction time is small relative to the ground-
water velocity). Likewise small Da values, typically below
1.0 [-], suggest that the contaminant will not have sufficient
time to sorb to the porous media (i.e., sorption reaction
time is large relative to the groundwater velocity) and may
be treated as conservative. Intermediate Da values are
rate limited, and forward and reverse kinetic modeling is
needed. Theoretically, a Gaussian distribution of Y would
yield a similarly Gaussian distribution of cell based veloc-
ities, and therefore a similar distribution of Da (Figure 1a).
This is consistent with perturbation theory, where if accord-
ing to equation (A1), ln(K) is described by Y ¼ <Y> þ Y0,
v and Da may be described as v ¼ <v> þ v0 and Da ¼
<Da> þ Da0, respectively. This reasoning does not con-
sider preferential flow pathways, or connected, high-Y
zones where the velocity may be much faster than the pre-
dicted velocity given the statistical composition of the do-
main. Figures 1b, 1c, and 1d show an example cross
section of the parametric relationship between Y, v, and Da.
As expected, regions of high Y relate to regions of high v
and regions of low Y relate to regions of low v. The Y-v
relationship, however, is not completely linear due to the
physical constraints of the flow regime. In contrast, the v-Da
relationship is linear (see equations (9) and (10)). A com-
parison of Figures 1b and Figure 1d shows a clear Y-Da
trend, where equilibrium zones (high Da) are associated
with zones of low Y. To quantitatively investigate the
impact of preferential flow pathways, one representative
realization is used to calculate a distribution of Da for each
flow field ensemble using the DaLocal definition (equation
(9)). A comparison to (equation (10)) is then conducted.
Results of Da estimates and distributions are discussed in
section 4.1.

2.2.2. Analysis of Breakthrough Curves: Peak
Concentration Distributions, Effective Retardations,
Connectivity Indicator

[12] Four main parameters are adjusted in the following
sensitivity analysis: ", v, Pe, and the sorption scenario (i.e.,
LEA versus kinetic). To quantify the effects of each param-
eter adjusted, the flux averaged peak time (tpk) [day] and
normalized peak concentration (Cpk/C0) [-] at which the
maximum mass arrives at the well are calculated. tpk and
Cpk/C0 are computed for each well and each realization.
Cumulative distribution functions (CDFs) shown here are
composed of (nw�nr) points, where nw is the number of
wells within the domain, and nr is the number of realiza-
tions in the ensemble (i.e., 800 points per ensemble in this
analysis). Ensemble CDFs are then compared (see section
4.2). CDFs of pulse and continuous sources are also exam-
ined given the same ensemble parameters. Bellin and Rubin
[2004] found that peak concentration arrival time was a
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good proxy for advection dominated travel time. Peak ar-
rival times are also of importance in the context of risk
assessment, where the peak environmental concentration is
averaged over an exposure duration (further details and dis-
cussion in Appendix B1).

[13] For each sorption scenario (LEA versus kinetic),
effective retardation is expressed relative to tpk and Cpk of
the corresponding tracer simulation of that realization,
where

Reff;LEA ¼
tpk;LEA

tpk;tracer
; (11)

Reff;kin ¼
tpk;Kin

tpk;tracer
: (12)

This essentially uses the conservative tracer simulations as
a control by holding the parameters ", v, and Pe, constant
and isolating the effect of the sorption scenario alone.
Equations (11) and (12) are based on the results of the nu-
merical simulations and describe the effective retardation
of the overall plume. Reff,LEA and Reff,Kin should not be con-
fused with equations (3) and (4) which are used to calculate
cell-based retardation within the model. Because of the
relationship imposed between the ratio kf /kr and KD (see
equation (2)), if LEA is an appropriate assumption, Reff,LEA

is equivalent to Reff,Kin, regardless of the hydrologic domain
or the transport parameters.

[14] To investigate the effect of LD, two metrics are
used to calculate effective retardations. First, the differen-
ces between nonreactive breakthroughs are compared for
Pe ¼1 and Pe =1 scenarios through the effective retar-
dation of dispersion, Reff,Disp

Reff;Disp ¼
½tpk;tracer�Pe 6¼1
½tpk;tracer�Pe¼1

: (13)

To isolate the effect of LD alone, equation (13) is calcu-
lated for the tracer simulations (i.e., excludes the sorption
scenario). This metric holds the parameters ", and v con-
stant while isolating the effect of Pe alone.

[15] Because kinetic sorption is associated with tailing
behavior [e.g., Valocchi, 1989], the additive effect of
kinetics and dispersion is also investigated via the effective
retardation of tailing, �Reff,Tail :

�Reff;Tail ¼ ½Reff;Kin�Pe 6¼1 � ½Reff;LEA�Pe6¼1: (14)

This metric holds the parameters " and v constant and iso-
lates the additive effect of tailing induced by LD and
kinetic sorption. Theoretically this effective retardation
resulting from " and v can also be calculated, by following
the same parameter isolation process. Because solute retar-
dation scales linearly with v, the retardations of " and v
were not found to be controlling in this study and are there-
fore not presented in this work.

[16] Lastly, channeling through preferential flow paths is
investigated by the connectivity indicator, CI [-]. As
described by Knudby and Carrera [2005], the position of
one point on the breakthrough curve (first-order moment)
such as the peak or average concentration is proportional to
the effective hydraulic conductivity, and does not relay in-
formation on flow connectivity. The shape of the break-
through curve (higher-order moments), however, can be
used to relate the degree of connectivity within an aquifer.
Here we define CI as the ratio of the time at which 5% of
particle mass is present at the well (t5) [day], and the time
at which 50% of the particle mass is present at the well
(t50) [day]:

CI ¼ t50

t5
: (15)

Figure 1. (a) Theoretical distribution of Da following a Gaussian distribution of K. (b–d) Identical
cross sections showing the relationship between the variables (b) Y, (c) v, and (d) Da.
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A higher CI value signifies a breakthrough curve skewed
toward earlier arrival times and significant tailing. Higher
CI values indicate high channeling when compared to
lower CI values [Knudby and Carrera, 2005]. Equation
(15) was recently utilized in the work of Bianchi et al.
[2011] and is based on the work of Knudby and Carrera
[2005] but differs in that it does not utilize an area averaged
exit face of the domain.

3. Description of Case Study
[17] A hypothetical contamination scenario of a potable

drinking water aquifer is investigated in a fully saturated,
regional-scale aquifer (approximately xd ¼ 4000 [m], yd ¼
1000 [m], zd ¼ 100 [m]). 200 realizations of Y and the sub-
sequent hydrologic flow field were calculated by following
the methodology described in section 2.1. Hydrologic pa-
rameters implemented (Kg, �2

Y , �h/�v) are typical of a fluvial
or glacial outwash sand and gravel aquifer [Springer, 1991;

Rehfeldt et al., 1992; Rubin, 2003]. In this study two end
member " are used to simulate aquifers with varying
degrees of stratification. To allow for cross comparison of
differing " ensembles, �h is varied while �v remains con-
stant. Appropriate spatial sampling of the Y field is imple-
mented through a resolution of at least five cells per �v and
�h [Ababou et al., 1989], yielding a fine-scale discretization
of �x ¼ �y ¼ 3.0 [m] and �z ¼ 0.3 [m] resulting in
approximately 150 million compute cells. Due to the large
number of cells per realization and the large number of
realizations per ensemble, convergence below 1% was
reached after 75 realizations in " ¼ 0.1 ensembles and
below 0.1% in " ¼ 0.006 ensembles. Figure 2 shows rep-
resentative realizations of each " ensemble. Additionally,
three regional head gradients are simulated to produce
varying degrees of v, spanning 3 orders of magnitude (v ¼
0.001, 0.01, 0.1 [m d�1]). A hydraulic head gradient along
the x axis is imposed with constant head boundaries at the
two faces of the domain parallel to they axis and enforcing

Figure 2. Representative realizations of Y [m d�1] fields for (a, c) a more stratified domain, " ¼ 0.006
[-], opposed to (b, d) a less stratified domain, " ¼ 0.1 [-]. Plan view is shown in Figures a and b and a
segment of the vertical cross-sections is shown in Figures c and d.
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no-flow boundaries at all other faces of the domain.
Domains of each " are paired with each v, yielding six en-
semble scenarios. These ensembles of varying hydraulic
properties are used to simulate plume migration from a
fixed source location up gradient of four groundwater
pumping wells where contaminant mass is tracked as a
function of time. Table 1 lists all flow parameters values
used in the case study.

[18] Continuous and pulse sources of arsenic-contami-
nated groundwater are investigated, where the source con-
centration is assumed to be lognormally distributed based
on the geochemical modeling of a source term in a previous
study [Siirila et al., 2012]. Arsenic is a worldwide contami-
nant of concern in groundwater resources and is further-
more of importance due to its high cancer and noncancer
adverse health effects. Arsenic was also chosen for this
case study due to its relatively mobile nature in comparison
to other known toxins such as lead [Siirila et al., 2012].
Human toxicity of arsenic has also been extensively studied
in areas of naturally occurring, arsenic rich host rock mate-
rial [Nickson et al., 1998; Berg et al., 2001; Ogola et al.,
2002; Yu et al., 2003]. The US EPA ranks contaminants
according to the amount of available data for a given con-
taminant from A (known human carcinogen) to E (evidence

of noncarcinogenicity for humans). Arsenic is one of the
few contaminants which is rated as ‘‘A’’, known human
carcinogen, due to the vast number of studies which iden-
tify arsenic as the cause of cancers of the skin, lung, liver,
and kidney [Chen et al., 1992; Guo et al., 1997]. One study
estimated that at the previous US EPA maximum contami-
nant level (MCL) of arsenic (50.0 [ppb], now currently
10.0 [ppb]) at a water ingestion rate of 1.0 [L d�1], as many
as 13 out of every 1000 US persons are at risk of dying
from liver, lung, kidney, or bladder cancers [Smith et al.,
1992]. As discussed in Appendix B, this probability greatly
exceeds the US EPA remediation action levels, and stresses
the need to accurately quantify US exposure to arsenic con-
tamination. While the analysis here is based on the sorptive
and toxicity values of arsenic, the results are generally
applicable to a range of other contaminants with similar
properties.

[19] Solute transport of mobilized arsenic is modeled
using the methodology described in section 2.2. For each of
the six aforementioned flow field ensembles, plume migra-
tion is simulated utilizing LEA and first-order kinetic
sorption. Two sets of kinetic forward and reverse rates are
used (referred to hereafter as Kin1 and Kin2) where the ra-
tio of forward and reverse rates of each scenario are equiva-
lent to each other and to the KD value used in the LEA
simulations (see equation (2), kf,Kin1/kr,Kin1 ¼ kf,Kin2/kr,Kin2

¼ KD). Forward and reverse rates range by an order of
magnitude, and are meant to be reflective of a range of lit-
erature values for arsenic [e.g., Darland and Inskeep,
1997; Smith and Naidu, 2009]. As described in section 2.2.2,
if LEA is appropriate, the effective retardation of all sorption
scenarios is equivalent (Reff,LEA ¼ Reff,Kin1 ¼ R eff,Kin2). The
effect of LD is also investigated by simulating ensembles
with (Pe = 1) and without (Pe ¼ 1) this added parame-
ter. Table 1 lists all transport parameter values used in the
case study.

[20] For each ensemble, human health risk is calculated
for the 99th fractile of variability (maximally exposed indi-
vidual) following the methodology described in Appendix B.
Risk to individuals within a population is calculated with ex-
posure parameters based on the California, USA ground-
water case study of McKone and Bogen [1991] and the
references therein. Table 2 lists the generic exposure parame-
ters used as suggested by the US EPA [U.S.EPA, 2001,
2004], as well as the arsenic toxicity values obtained and/or
derived from the IRIS database. For each ensemble, 200
flow and transport realizations (uncertainty loop) were simu-
lated and then resampled using a bootstrap method of 20,000
realizations to accurately characterize the source-term distri-
bution. An additional 10,000 realizations of variability were
then conducted for each uncertainty loop, resulting in 200
million Monte Carlo iterations per realization of the K field.

4. Results and Discussion
4.1. Damköhler Number Distributions

[21] A global definition of the Damköhler number using
equation (10) (see section 2.2.1) was used to estimate the
extent to which LEA is valid for each case. Table 3 lists
DaGlobal for varying v and for both kinetic sorption rates.
Using this predictor of solute behavior, equilibrium is
expected for all scenarios, regardless of kf or v. To

Table 1. Flow and Transport Parameter Values

Parameter Value Units

Domain Size (xd, yd, zd) � (4000 � 1000 � 100) [m]
Cell discretization (�x, �y, �z) (3.0 � 3.0 � 0.3) [m]
Number of cells (nx, ny, nz) (1333 � 333 � 333) –
Location of source (x, y, z) (500.0, 500.0, 30.0) [m]
Distribution of source C lognormal distribution [mg L�1]
Mean of source C 0.005 [–]
Standard deviation of source C 0.55 [–]
Number of particles 300,000 –
Geometric mean of Y KG,Y ¼ 52 [m d�1]
Standard deviation of Y �Y ¼ 1.9 –
Porosity � ¼ 0.33 –
Well pumping rates Qw ¼ 500 [m3 d�1]
Well screen length sw ¼ 20 [m]
Well locations xw ¼ 3500, yw ¼ 800, zw ¼ 75; [m]

xw ¼ 3500, yw ¼ 600, zw ¼ 75;
xw ¼ 3500, yw ¼ 400, zw ¼ 75;
xw ¼ 3500, yw ¼ 200, zw ¼ 75;

Anisotropy Ratios
" ¼ 0.1 [-] �h ¼ 15.0; [m]

�v ¼ 1.5 [m]
" ¼ 0.006 [-] �h ¼ 250.0; [m]

�v ¼ 1.5 [m]

Mean Groundwater Velocities
v ¼ 0.001 [m d�1] �h ¼ 0.0317 [m]
v ¼ 0.01 [m d�1] �h ¼ 0.317 [m]
v ¼ 0.1 [m d�1] �h ¼ 3.170 [m]

Sorption Scenarios
LEA, partition coefficient KD ¼ 25 [L kg�1]
Kin1, forward and reverse rates kf ¼ 2.88, kr ¼ 0.115 [L d�1]
Kin2, forward and reverse rates kf ¼ 28.80, kr ¼ 1.150 [kg d�1]

Local Dispersion Scenarios
Pe ¼1 [-] �L ¼ 0.0, �T ¼ 0.0 [m]
Pe ¼ 1.5 � 104 [-] For �h ¼ 15.0;

�L ¼ 0.001, �T ¼ 0.0001 [m]
Pe ¼ 2.5 � 105 [-] For �h ¼ 250.0;

[m]�L ¼ 0.001, �T ¼ 0.0001
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investigate to use of the Damköhler number as an indicator
of macroequilibrium conditions, a distribution of DaLocal

numbers was also calculated for representative realizations
of each of the six ensembles and for both kinetic rates using
equation (9). Figure 3 shows the frequency of DaLocal for
varying v (Figures 3a–3c) and " (see key of each part of
Figure 3) in a single realization composed of 1.4 � 108

cells for both kinetic scenarios Kin1 and Kin2 (Figure 3
solid versus dashed lines, respectively). Regardless of v, ",
or kf, a large distribution of DaLocal is apparent, ranging
from prediction of the solute akin to a tracer (DaLocal

� 1.0), kinetically controlled (1.0 	 DaLocal � 10.0), or in
equilibrium (DaLocal 	 10.0). A large frequency of DaLocal

values fall within nonequilibrium regimes, suggesting mod-
eling with LEA may not be an appropriate assumption at
all spatial locations within the domain. At this �2

Y , the dis-
tributions of DaLocal for all scenarios are non-Gaussian,
suggesting the relationship between Y and v (and therefore
DaLocal) are nonlinear. This nonlinearity is expected due to
the physical constraints on v, where v is shown to vary
more smoothly and has a smaller coefficient of variation in
comparison to Y [Rubin, 2003]. Here we see very little
difference in DaLocal distribution with changing ", but a
clear trend with increasing v. As v increases, the tail of the
DaLocal distribution is smaller (i.e., reduced frequency of
equilibrium cells) corresponding to a greater frequency of
tracer and kinetic cells. The distributions of DaLocal are
also affected by the kinetic rate utilized, where the slower
kf (Kin1) yields a distribution of DaLocal skewed toward
lower values and the faster kf (Kin2) yields a distribution of
DaLocal skewed toward higher values. This effect combined
with the influence from varying v suggests the slowest v
and the faster kf realization (Figure 3a, dashed lines) will
contain the most cells in solute equilibrium. Likewise, the
fastest v and the slower kf realization (Figure 3c, solid
lines) will contain the most cells out of equilibrium. The
trends in DaLocal (Figure 3) are comparable to the same
trends in DaGlobal (Table 3), and are attributed to the linear
dependence between v and kf on DaLocal and DaGlobal.

While the results of DaLocal expand on the first-order
approximation using DaGlobal, the distribution of local
DaLocal does not include path-dependent effects of the sol-
ute. Here we argue a more appropriate indicator of

Table 3. DaGlobal [-] Estimates

v ¼ 0.001 v ¼ 0.01 v ¼ 0.1

Kin1 8640.0 864.0 86.4
Kin2 86,400.0 8640.0 864.0

Table 2. Exposure and Toxicity Parameter Values

Parameter Value Units Distributiona Values Source

Exposure duration ED [year] C 30 US EPA RAGS [2001]
Exposure frequency EF [d yr�1] C 365 US EPA RAGS [2001]
Averaging time AT [d] C 70 � 365 US EPA RAGS [2001]
Ingestion rate per unit body weight IR/BW [L kg d�1] L (3.3 � 10�2, 1.3 � 10�2) Mckone and Bogen [1991]
Skin surface area per unit body weight SA/BW [m2 kg�1] L (2.7 � 10�2, 2.5 � 10�3) Mckone and Bogen [1991]
Fraction of skin in contact with water fskin [-] U (4.0 � 10�1, 9.0 � 10�1) Mckone and Bogen [1991]
Shower exposure duration EDshower [h d�1] L (1.3 � 10�1, 9.0 � 10�2) Mckone and Bogen [1991]
Unit conversion factor CF [L m�3] C 1.0 � 10�3 –
Cancer potency factor, ingestion CPFing [kg d mg�1] C 1.5 IRIS
Cancer potency factor, dermal CPFderm [kg d mg�1] C 1.58 (CPFing/ABSGI)
Gastrointestinal absorption ABSGI [-] C 95% US EPA RAGS [2004]
Dermal permeability coefficient in water Kp [m h�1] C 1.0 � 10�5 US EPA RAGS [2004]

aConstant (C) and lognormal (L) values represent the mean and standard deviation, respectively; Uniform (U) values represent the minimum and maxi-
mum values, respectively.

Figure 3. (a–c) Distributions of DaLocal for the three
varying mean groundwater velocities. Differences in ani-
sotropy ratio are denoted by color; Kin1 realizations are
shown in solid lines whereas Kin2 distributions are shown
in dashed lines (see key of each subfigure).
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equilibrium conditions is the effective retardation (Reff)
with respect to the expected retardation (R). General en-
semble statistics are analyzed in sections 4.2–4.4 and calcu-
lated effective retardations are presented in section 4.3.

4.2. Peak Concentration Distributions

[22] The magnitude and distribution of the environmen-
tal concentration, independent of timing, are driving forces
when assessing exposure (see Appendix B1). For each real-
ization, and for each of the four wells, Cpk/C0 is calculated
using elution curves (see section 2.2.2). Figure 4 shows
inner well (yw ¼ 600 [m] and yw ¼ 400 [m]) ensemble
CDFs of Cpk/C0 for a continuous source. The effects of
varying v (Figures 4a–4b, 4c–4d, 4e–4f), " (see key for
each subplot), and Pe (Figures 4a, 4c, 4e, and 4b, 4d, 4f)
are compared. LEA distributions are shown as solid lines
whereas Kin1 distributions are shown in dashed lines.
Results from Kin2 distributions show great similarity to
Kin1 distributions and are therefore not presented here. The
matrix of subplots shown in Figure 4 are used here to dis-
tinguish which combination of parameters (i.e., v, ", Pe,
and LEA versus Kin1) drive the magnitude and distribution
variance of Cpk/C0.

[23] Four general trends are noteworthy. Trend 1: an
increase in Cpk/C0 with an increase in v (for example, the
x axis shift in Figures 4a and 4b compared to Figures 4e
and 4f). This can be attributed an increase in effective
recharge, where the regional head gradient increases in
relation to the well pumping rate (which remains constant).
In other words, if we define a dimensionless arrival time,
tarr,v ¼ Qregional,v/Qw (where Qregional,v ¼ v��z�nz��y�ny
is the regional volumetric flux, see Table 1 for further defi-
nitions), an increase in Cpk/C0 increases linearly with tarr,v.
Trend 2: an increase in the Cpk/C0 distribution variance
with an increase in v (for example, the smaller ensemble
distribution in Figures 4a and 4b compared to Figures 4e
and 4f) is attributed to an increase in macrodispersion
within the aquifer, and thus more variability in the concen-
tration at the well. Trend 3: an increase in the Cpk/C0 distri-
bution variance with a decrease in " (see the key in each
subplot), is also attributed to an decrease in macrodisper-
sion with ". In the more stratified domain (" ¼ 0.006), the
aquifer is subject to lower solute spreading through chan-
neling in interconnected K zones. This channeling results
in a binary distribution of the solute arriving at the well
where elution water is either (1) clean, and the connected

Figure 4. Cumulative distribution functions of Cpk/C0 for varying v (a–b, c–d, e–f) and " (see key for
each subplot) using a continuous source. Infinite Pe (a, c, e) and finite Pe (b, d, f) are also shown. LEA
distributions are shown in solid lines whereas Kin1 distributions are shown in dashed lines.
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zone does not follow a pathway connecting from the source
to the well or (2) highly concentrated, and a connected
zone between the source to the well exists. This behavior
can be thought of as a ‘‘hit or miss’’ probability, increasing
with v. This idea is consistent with that described by other
previous studies, which show that in the absence of LD, the
probability distribution function (pdf) model of point con-
centrations converge to a binary distribution [Dagan, 1982;
Sánchez-Vila and Sol�ıs-Delf�ın, 1999; Rubin, 2003; Bellin
and Tonina, 2007]. The latter references refer to studies
involving tracers, where we note this behavior for reactive
solutes. A quantitative discussion of results regarding chan-
neling is presented in section 4.4.

[24] Trend 4: an increase in the Cpk/C0 distribution var-
iance with an increase in Pe (see the smaller ensemble dis-
tributions in the left panel versus those in Figure 4, right)
is related to the imposed LD within the model. While it is
expected that the inclusion of LD will increase distribution
variance, it should be noted that the cell-based mixing
imposed for each cell is minute, equal to 1.0 [mm] in the
longitudinal direction and 0.1 [mm] in the transverse direc-
tion (see Table 1). The increase in Cpk/C0 distribution var-
iance is physically relatable to the probability of pumping
noncontaminated water from the well. For example, the
percentage of clean groundwater withdrawal from a strati-
fied aquifer varies between approximately 20%–90%
whereas the less stratified aquifers are always pumping
contaminated water. This result is in contrast to the molec-
ular diffusion work of Tartakovsky and Neuman [2008],
where an increase in Pe yielded less mixing. In agreement
with our results, Tartakovsky and Neuman [2008] also
observed an increase in channeling with an increase in Pe.
This study, however, only utilized a two dimensional do-
main and did not simulate spatial correlation of grain sizes.
These limitations aside, this comparison suggests an up
scaling of pore-scale diffusion to local dispersion may not
be appropriate. These results also show agreement with
those example simulations in the methodology presented
by Siirila et al. [2012], which reported similar results for
LEA distributions. Here we investigate the effect of time-
dependent, kinetic sorption and the effect of time-depend-
ent sorption in conjunction with LD (discussed in more
detail below), in addition to how this metric (Cpk/C0 CDF
distributions) change with 3 orders of magnitude v, all
topics which were not addressed in the methodology pre-
sented by Siirila et al. [2012]. This portion of the current
discussion is the only overlying analysis with Siirila et al.
[2012], shown here for completion and used as a discussion
tool for other, new metrics in sections 4.3–4.5.

[25] To investigate if equilibrium is an appropriate
assumption, CDFs of Kin1 ensembles (dashed lines) are
compared to CDFs of LEA ensembles (solid lines). For sce-
narios with Pe ¼ 1 (left panel of Figures 4a, 4c, and 4e)
Kin1 ensembles are nearly indistinguishable from LEA
ensembles, suggesting LEA is an appropriate assumption
for these hydro-geologic conditions. Unlike the Pe ¼ 1
ensembles, scenarios with Pe = 1 (right panel of Figures
4b, 4d, and 4f) Kin1 ensembles differ from LEA ensembles.
In other words, with the inclusion of LD the equilibrium
assumption is no longer valid given these hydro-geologic
conditions. This is especially apparent for the more strati-
fied domain (" ¼ 0.006), where for all v the solute is out of

equilibrium. The less stratified domain (" ¼ 0.1) is out of
equilibrium for only the intermediate velocity (Figure 4d).
The feedback between kinetic sorption and LD in stratified
aquifers yielding disequilibrium conditions is an unex-
pected result, and highlights the complex interactions
between time-dependent reactions are the hydro-geologic
setting, as discussed in further detail below.

[26] Figure 5 shows the CDF results for a pulse source,
and reflects the same formatting as Figure 4 for a continu-
ous source. The magnitudes of Cpk/C0 values are approxi-
mately 2 orders of magnitude lesser for ensemble CDFs of
the pulse source (Figure 5) in comparison to the continuous
source (Figure 4). The four general trends noted above for
the continuous source are also true for the pulse source
shown in Figure 5. Kin1 ensembles (dashed lines) are
clearly distinguishable from LEA ensembles (solid lines),
suggesting LEA is not an appropriate assumption given
these hydro-geological conditions. For all scenarios (Fig-
ures 5a–5f) LEA ensembles overestimate the magnitude of
Cpk/C0 values but do not dramatically affect the variance of
the distribution. The lesser Kin1 Cpk/C0 values are attrib-
uted to delayed mass breakthrough at the well (i.e., a longer
tailing effect). Thus, the effect of the time dependence in
the pulse source (Figure 5) when compared to the time in-
dependent continuous source (Figure 4) is dominant in pre-
dicting equilibrium conditions. A disparity between Pe =

1 (Figure 5, right) and for Pe ¼ 1 (Figure 5, left) is also
apparent, where the inclusion of LD yields a more apparent
difference between Kin1 and LEA ensembles. This is
attributed to the aforementioned additive effect between
the time dependence in kinetic sorption and LD, also
observed in ensembles utilizing the continuous source.
These results show interdependence between kinetic sorp-
tion and LD not previously documented. Here the induced
cell-based mixing creates particle jumps from intercon-
nected high-K regions into regions of low K and vice versa.

[27] We speculate that the effect of the time dependence
associated with kinetic sorption into and out of solution is
magnified, yielding solute behavior unlike that of equilib-
rium simulations. This process is illustrated at the high-
low-K interface in the schematic representation shown in
Figure 6 for LEA sorption (Figure 6a) and two possible ki-
netic sorption scenarios (Figures 6b and 6c). This sche-
matic highlights the process of particle retardation when
LD forces the particle into neighboring high or low K
zones. Particle movement at the time of LD (tDisp, bottom
panel of Figure 6) is indicated by particle locations 0–10,
where equal time has elapsed between each incrementing
particle location. Solid-end cap lines indicate the magni-
tude of particle displacement whereas vector lines indicate
the magnitude of the groundwater velocity. The magnitude
of particle velocity (or the velocity of the contaminant sol-
ute) is shown in the panel labeled vparticle. Because LEA is
assumed in Figure 6a, the vparticle is retarded by a factor of
R regardless of if the particle is located in a high- or low-K
zone (i.e., v/R, see equation (3) for definition of R). When
kinetically controlled particles (Figures 6b and 6c), are
located within a low-K zone, vparticle is analogously equiva-
lent to v/R. The assumption here is that v is much slower in
low-K zones than in high-K zones, and is favorable to equi-
librium conditions. This regime is akin to a high Da, and is
illustrated by very similar particle displacements between
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particle locations 1 and 2 for both LEA and kinetic scenar-
ios. When kinetically controlled particles are located within
a high-K zone, vparticle is equivalent to v retarded by a factor
of Reff,kin (i.e., v/Reff,kin, see equation (4) for definition of
Reff,kin). Depending on the actual magnitude of v in the
high-K zone, this regime is analogous to low and intermedi-
ate Da. An example of an intermediate (kinetic dependent)
Da is shown in Figure 6b, where Reff,kin < R, and the parti-
cle displacement between particle locations 3 and 4 is
larger in the kinetic case. The extreme case of very low Da
is depicted in Figure 6c, where the magnitude of v in the
high-K zone is very high in relationship to the rate of
the reaction, and Reff,kin � R. As Reff,kin approaches unity,
the particle is less retarded and behaves similar to a tracer.
This is illustrated by the large particle displacement
between locations 3 and 4. Our results, along with the con-
ceptual model, indicate that there is an additive process
involving kinetic sorption and LD that include: (1) particle
retardation similar to LEA in low-K zones where low v
regimes are conducive to equilibrium conditions, (2) lower
particle retardation in high-K zones via less reaction time
in high-v regimes, (3) shorter particle displacement in low-
K zones and longer particle displacements in high-K zones,
and (4) a higher frequency of tDisp in LEA scenarios

compared to kinetic scenarios. A comparison of pulse and
continuous sources show the kinetic-LD effect is greater
for pulse sources, where time-dependent variables are more
sensitive to this interaction. In addition to analyzing the
magnitude and distribution of peak concentrations, section
4.3 discusses the results related to the timing of the sorbing
solutes via effective retardation factors.

4.3. Effective Retardation Factor

[28] In addition to comparing normalized peak concen-
trations, corresponding peak times (tpk) are also calculated.
As discussed in section 2.2.2, tpk for each sorption scenario
(tpk,LEA and tpk,Kin1) are normalized by tpk,tracer (see equa-
tions (11) and (12)), effectively factoring out the effects of
physical heterogeneity to analyze the sole effect of differ-
ences in Kin1 and LEA ensembles. Figure 7 shows a scat-
terplot (12 ensembles, 200 realizations each) of effective
kinetic retardations (Reff,Kin1) versus normalized peak tracer
concentrations (Cpk/Cpk,tracer) with infinite Pe (Figures 7a,
7c, 7e) and finite Pe (Figures 7b, 7d, 7f). To demonstrate
the behavior of the majority of plume mass, only values
corresponding to breakthrough mass greater than or equal
to 5% of the source mass are shown. The crossbar intersec-
tion at Reff ¼ 26 [-] and Cpk,Kin1/Cpk,tracer 
 0.038 [-]

Figure 5. Cumulative distribution functions of Cpk/C0 for varying v (a–b, c–d, e–f) and " (see key for
each subplot) using a pulse source term. LEA distributions are shown in solid lines whereas Kin1 distri-
butions are shown in dashed lines. Note the x-axis shown here is shifted two order of magnitude com-
pared to that shown in Figure 4.
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corresponds to the expected solute retardation if equilib-
rium is an appropriate assumption. Results for Kin1 simula-
tions with a pulse source are shown here; LEA ensembles
(not shown here) are centered at the crossbar intersection,
as expected.

[29] As shown in Figures 7a–7f, Kin1 ensembles are not
centered at crossbar intersection but rather are centered
between Reff ¼ 40 – 70 [-] with corresponding Cpk,Kin1/
Cpk,tracer values less than 0.038. In other words, the major-
ity of kinetic realizations yield a more retarded peak arrival

time and concentration when compared to the LEA realiza-
tions, even though the expected retardations are equivalent.
This result demonstrates the influence of the rate depend-
ence associated with kinetic sorption, and how it potentially
impacts both peak concentration and peak times. This
behavior (i.e., the shift from expected intercept in Figure 7)
is evident across 3 orders of magnitude of v, including the
v ¼ 0.001 [m d�1] cases that have the highest potential of
the three v for equilibrium conditions to persist. This
result furthermore demonstrates the impact of kinetic sorp-
tion in these simulations and in other potential hydrologic
conditions.

[30] Second, while the majority of the scatter is shifted
toward greater Reff values (i.e., more retarded peak times),
several realizations show much smaller Reff values, and
therefore very fast arrival times. This is especially true for
finite Pe ensembles (Figure 7, right). The faster peak times
can again be explained by the schematic in Figure 6, where
the increase in LD in kinetic simulations may move a parti-
cle from a region of low to high K, increasing the probabil-
ity of aquifer channeling. This result with respect to time is
consistent with the results with respect to concentration as
discussed in section 4.2, where the centered value of Reff

for finite Pe, Kin1 ensembles is nearly double that of LEA
ensembles. Differences in stratification are also apparent in
Figure 7, where smaller " demonstrate less variance in Reff

and greater " demonstrate more variance in Reff. In other
words, the normalized arrival times for more stratified
domains are consistent in contrast to the less consistent ar-
rival times with the less stratified domain. This effect can
also be attributed to channeling and preferential flow path-
ways in the stratified domain.

[31] The effective retardation of dispersion, Reff,Disp, is
used to isolate the effect of LD through the use of equation
(13). As outlined in section 4.2, this metric is performed on
tracer simulations only in order to separate the effect of the
sorption scenario. Figure 8 shows Reff,Disp versus [Cpk]Pe=1/
[Cpk]Pe¼1 at both " (see subplots) for varying v (Figures
8a–8c). Summary statistics are also shown in Table 4.
Regardless of v, the driver in Reff,Disp behavior is the differ-
ence in ". The less stratified domain (" ¼ 0.1) exhibits little
difference between finite and infinite Pe, as shown by a clus-
tered Reff,Disp near unity (Reff,Disp ¼ 1, Cpk/C0 ¼ 1). In con-
trast, the stratified domain (" ¼ 0.006) exhibits scatter far
from the unity point. A majority of this scatter (>50% of
points) falls within quadrants II and IV in Figures 8a–8c.
Quadrant II reflects when:

[32] 1. (tpk,Pe=1) � (tpk,Pe¼1),
[33] 2. (Cpk,Pe=1) 	 (Cpk,Pe¼1).
[34] In other words, when the inclusion of LD yields a

faster peak time and a higher concentration. Quadrant IV
reflects when:

[35] 1. (tpk,Pe=1) 	 (tpk,Pe¼1),
[36] 2. (Cpk,Pe=1) � (Cpk,Pe¼1).
[37] Or, when the inclusion of LD yields a slower peak

time and a lower concentration. The " ¼ 0.006 scatter in
quadrant II reflects when the inclusion of LD forces the
contaminant from zones of low K into zones of higher K.
Similarly, " ¼ 0.006 scatter in quadrant IV reflects move-
ment from zones of high K into zones of lower K. This find-
ing suggests the inclusion of LD (even if only on the mm
scale) will cause either a retardation or acceleration of the

Figure 6. Schematic representation of the high-low-K
interface given LD for (a) LEA sorption and (b–c) two pos-
sible kinetic sorption scenarios.
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overall plume. While other studies have shown the effect of
LD affects higher-order moments [Dagan and Fiori, 1997;
Fiori et al., 2002; Fiorotto and Caroni, 2002; Bellin et al.,
2004], to the best knowledge of the authors, the theory of
LD as a catalyst of retardation of the first-order moment
has yet to be reported (represented here as the peak time
and concentration). This result regarding LD builds on the
previous theories regarding diffusion suggested by LaBolle
and coauthors [LaBolle et al., 2006; LaBolle et al., 2008].
The effect of kinetic sorption is isolated from this result,
and is therefore applicable (and has implications) in the
theory of nonsorbing solutes as well.

[38] The last effective retardation calculated is also dis-
cussed in section 2.2.2 and reflects the additive effect of
tailing induced by LD and kinetic sorption, referred to here
as �Reff,Tail. Equation (14) is used to calculate this additive
effect, and is tabulated in Table 4. These statistics quantita-
tively measure the differences in effective retardation
between LEA ensembles without LD (not plotted here, but
centered around Reff,LEA ¼ 26 [-]) and Kin1 ensembles with
LD (right panel of Figure 7). The average �Reff,Tail (see
Table 4, �Reff;Tail ) is considerably larger for the less strati-
fied domain (" ¼ 0.1) than for the stratified domain (" ¼
0.006). The standard deviation of �Reff,Tail (see Table 4,
��Reff;Tail ) is larger for the less stratified domain when

compared to the stratified domain. These results suggest the
additive effect from kinetic sorption and LD affect the
effective retardation of both stratification scenarios, but in
different ways. The �Reff;Tail for " ¼ 0.1 ensembles is
more consistently affected by the tailing effect when com-
pared to the " ¼ 0.006 ensembles. Because the ��Reff;Tail of
the " ¼ 0.006 ensembles is large (8.3 – 11.6 for all v) when
compared to " ¼ 0.1 ensembles (4.7 – 8.4 for all v), the
additive tailing effect is also pronounced, but not as consis-
tently. Table 4 also shows ��Reff;Tail increases with greater v,
an artifact of increased plume spreading with increased v.
Interestingly, the relationship between �Reff;Tail and v is
unclear, where the intermediate v does not correspond to
intermediate �Reff;Tail values but rather minimum �Reff;Tail

values. This analysis of �Reff,Tail demonstrates the pro-
nounced solute tailing effect that would otherwise be
neglected if the two modeling assumption (LEA and Pe ¼
1) were presumed. These small-scale differences in trans-
port and how they affect both concentration and human
health risk are further discussed in section 4.4.

4.4. Measure of Aquifer Channeling

[39] To investigate aquifer connectivity, the connectivity
indicator (CI) metric is utilized in conjunction with

Figure 7. Kin1 effective retardation ratios versus normalized peak concentrations for each realization
of the six instantaneous pulse-source ensembles for (a, c, e) infinite Pe and (b, d, f) finite Pe. Differences
in v and " are denoted by color and symbol (see key for each subplot).
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breakthrough times corresponding to when 50% and 5% of
the mass arrives at the well (see equation (15)). Table 5
shows statistics corresponding to the average connectivity
indicator (CI ) [-] and standard deviation of the connectivity
indicator (�CI ) [-] for varying v, Pe, and sorption scenarios.

[40] General trends in CI include: (1) greater CI for ki-
netic sorption ensembles and lesser CI for LEA ensembles,
(2) greater than or equal CI in ensembles including LD and
lesser or equal CI ensembles excluding LD. This analysis
also indicates CI is invariant to differences in ". The higher
CI values within Table 5 signify a breakthrough curve

skewed toward earlier arrival times and significant tailing.
These results are consistent with the analysis presented in
section 4.3, where it was shown that the resulting solute
peak concentration from kinetic sorption and/or LD is re-
tarded in time. General trends in �CI provide a more
insightful discussion, and include: (1) greater �CI for ki-
netic sorption ensembles and lesser �CI for LEA ensem-
bles, (2) much greater �CI in stratified aquifers (" ¼ 0.006)
in comparison to the less stratified aquifers (" ¼ 0.1). �CI is
invariant to differences in LD. Trend 2 is the most pro-
nounced result, suggesting connectivity is highly variable
within the " ¼ 0.006 ensembles and not within the " ¼ 0.1
ensembles. CI values within highly stratified aquifers are as
high as 3.9 [-], and as low as 1.0 [-] where multiple realiza-
tions of the ensemble are dominated by either very fast or
slow flow paths. Very high CI values are indicative of fast
paths from the source to the well, and vice versa for very
low CI values. This behavior signifies �CI is a better metric
for connectivity in comparison to CI . v ¼ 0.001 [m d�1], "
¼ 0.006 ensembles at both sorption rates (Kin1 and Kin2)
yield the highest �CI values, indicating kinetic sorption is
controlling in the shape of the breakthrough curve. Finite
Pe of these ensembles (" ¼ 0.006, Kin1 and Kin2) com-
pared to infinite Pe also contributes to greater �CI , support-
ing the aforementioned finding concerning a positive
feedback between kinetic sorption and LD. We postulate a
greater �CI in the case of kinetically driven, stratified
domains is again physically explainable by the schematic

Figure 8. Effective retardation of dispersion versus nor-
malized peak concentration for varying v (a–c) and " (see
key for each subplot). Ensembles reflect a pulse source
only.

Table 4. Change in Effective Retardation of Dispersion and Effective Retardation of Tailing Statisticsa

v ¼ 0.001 v ¼ 0.01 v ¼ 0.1

Reff;Disp �Reff;Disp �Reff;Tail ��Reff;Tail Reff;Disp �Reff;Disp �Reff;Tail ��Reff;Tail Reff;Disp �Reff;Disp �Reff;Tail ��Reff;Tail

" ¼ 0.1 1.03 0.05 32.48 4.70 1.03 1.85 31.46 5.05 1.09 1.91 34.81 8.41
" ¼ 0.006 1.15 2.62 18.65 8.50 0.04 7.08 17.74 8.29 0.18 3.09 19.71 11.56

aEnsembles reflect a pulse source only.

Table 5. CI Statisticsa

v ¼ 0.001 v ¼ 0.01 v ¼ 0.1

CI �CI CI �CI CI �CI

" ¼ 0.1
LEA

Pe ¼1 1.31 0.03 1.31 0.03 1.31 0.03
Pe ¼ 1.5 � 104 1.31 0.03 1.31 0.03 1.30 0.02

Kin1
Pe ¼1 1.53 0.05 1.49 0.03 1.64 0.05
Pe ¼ 1.5 � 104 1.64 0.06 1.46 0.04 1.70 0.08

Kin2
Pe ¼1 1.53 0.05 1.47 0.04 1.53 0.06
Pe ¼ 1.5 � 104 1.64 0.06 1.46 0.04 1.66 0.09

" ¼ 0.006
LEA

Pe ¼1 1.33 0.25 1.35 0.30 1.33 0.19
Pe ¼ 2.5 � 105 1.50 0.25 1.49 0.26 1.45 0.17

Kin1
Pe ¼1 1.48 0.32 1.50 0.26 1.72 0.19
Pe ¼ 2.5 � 105 1.65 0.34 1.61 0.22 1.79 0.21

Kin2
Pe ¼1 1.48 0.32 1.45 0.28 1.46 0.18
Pe ¼ 2.5 � 105 1.65 0.34 1.59 0.23 1.60 0.23

aEnsembles reflect a pulse source only.
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shown in Figure 6, where LD may induces particles origi-
nally located in low-K zones into high-K channels and yield
a lower effective retardation of the particle (or vice versa),
thus increasing the distribution of �CI .

4.5. Carcinogenic Risk

[41] The probability of an individual incurring carcino-
genic cancer risk was calculated using the framework in
the work of Siirila et al. [2011] and equations presented in
Appendix B, sections B1–B3. Uncertainty and variability
was considered following the nested Monte Carlo scheme
presented in section B4. Figure 9 shows cancer risk given a
continuous source for infinite Pe (Figure 9a) and finite Pe
(Figure 9b). Figure 10 shows cancer risk given a pulse
source for infinite Pe (Figure 10a) and finite Pe (Figure
10b). Both Figures 9 and 10 show cancer risk to the maxi-
mally exposed individual (99th fractile of variability) at the
5th, 50th and 95th percentile of uncertainty (shown here as
upper and lower bound around the 50th percentile of uncer-
tainty). Varying v (x axis) is presented for differences in "
for the six flow field ensembles (see color key shown in
Figure 8). LEA distributions are shown in solid lines
whereas Kin1 distributions are shown in dashed lines,
yielding 12 ensembles of risk per Pe scenario and 24
ensembles of risk per source scenario. Remediation action

and de minimus levels are also plotted as horizontal lines
at 10�6 [-] and 10�4 [-]. The following is a discussion of
a comparison between these 24 ensembles and implica-
tions of the disparities between them.

4.5.1. Continuous Source Risk
[42] Figure 9a shows the probability of risk given a con-

tinuous source term and infinite Pe. As v increases, the
upper bound (95th percentile) of risk also increases. Differ-
ences in " are small for the v ¼ 0.001 [m d�1] and v ¼ 0.01
[m d�1], but drastically affect the distribution of risk at the
fastest v, where the more stratified domain (" ¼ 0.006, pink
lines) has an upper bound cancer risk higher than the 10�4

remediation action level and a mean cancer risk much lower
than the de minimis remediation action level (less than
10�10 [-]). In other words, the scientific uncertainty associ-
ated with the risk of cancer from a stratified domain with
high v is substantial (i.e., highly uncertain) but also relates
to the highest cancer risk of all flow field scenarios. As
explained with the CI metric (Table 5), stratified domains
have a much higher associated variance in connected path-
ways (i.e., very fast or very slow fingering). The elution
concentration at the well is therefore very low (near or equal
to zero) or very high (unmixed, highly concentrated sol-
utes). As shown here, the dependence on groundwater flow

Figure 9. Increased cancer risk for the maximally exposed individual (99th fractile of variability) for a
continuous source term is shown for (a) infinite Pe and (b) finite Pe. The 99th and 5th percentiles of
uncertainty are plotted as upper and lower bounds around the mean (50th percentile) for each ensemble.
Varying v is also shown (x-axis) for differences in " (see color key shown in Figure 8). LEA distributions
are shown in solid lines whereas Kin1 distributions are shown in dashed lines.
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pathways are directly related to the distribution and magni-
tude of risk estimates. Differences in the sorption scenario
(Figure 9a, dashed versus solid lines) are indistinguishable,
consistent with the results found in Figures 4a, 4c, and 4e.
For these 12 ensembles (continuous source, infinite Pe),
LEA is a correct assumption, and was accurately predicted
by DaGlobal.

[43] Figure 9b shows the probability of risk given a con-
tinuous source term and finite Pe. In general, as v increases,
the risk upper bound (95th percentile of uncertainty) also
increases. An exception exists for the less stratified, fastest v
ensembles (Figure 9b, purple lines) and is discussed below.
Variations in " also show dependence in trends with v.
Changes in risk with changes in " are small for v ¼ 0.001 [m
d�1] (red versus orange lines) and are more distinct for v ¼
0.01 [m d�1] and v ¼ 0.1 [m d�1] (green versus blue lines,
and purple versus pink lines). At the intermediate and fast-
est v, the more stratified domains (" ¼ 0.006, blue and pink
lines) have a higher upper bound of risk. In the case of the
intermediate v, differences in stratification result in differ-
ences in exceeding the 10�4 remediation action level.
Aside from v and ", perhaps the most controlling risk vari-
able for the continuous source with LD ensembles is differ-
ences in the sorption scenario. The upper bounds of Kin1
(dashed lines), v ¼ 0.001 [m d�1] and v ¼ 0.01 [m d�1]

ensembles are significantly higher than those of their
LEA counterparts (solid lines). This result confirms the
importance of the LD-kinetic sorption feedback shown in
Figures 4b, 4d, and 4f and demonstrates it as a governing
process in accurately calculating risk. DaGlobal does not
accurately characterize these ensembles that reflect disequi-
librium conditions.

[44] Unlike v ¼ 0.001[m d�1] and v ¼ 0.01 [m d�1], the
upper bounds of risk for the v ¼ 0.1 [m d�1] ensembles
(purple and pink lines) are similar for both sorption scenar-
ios. When compared to the less stratified domain with infi-
nite Pe, (Figure 9a, " ¼ 0.1, purple lines) the ensemble
statistics of the finite Pe ensembles (Figure 9b, " ¼ 0.1,
purple lines) mirror each other. Stratified domains with infi-
nite Pe (Figure 9a, " ¼ 0.006, pink lines) and finite Pe (Fig-
ure 9b, " ¼ 0.006, pink lines) both demonstrate large
distributions in risk, but the mean of the finite Pe ensem-
bles are larger than the near-zero (less than 10�10) mean
risk estimates of the infinite Pe ensembles. In other words,
while the uncertainty associated with both scenarios is
large, it is more certain that an aquifer modeled with LD
will yield cancer risk above the de minimis RAL. This com-
parison for continuous source ensembles illustrates the im-
portance of accurately representing small-scale reactions
such as kinetic sorption and LD, especially for v ¼ 0.001

Figure 10. Increased cancer risk for the maximally exposed individual (99th fractile of variability) for
a pulse source term is shown for (a) infinite Pe and (b) finite Pe. The 99th and 5th percentiles of uncer-
tainty are plotted as upper and lower bounds around the mean (50th percentile) for each ensemble. Vary-
ing v is also shown (x-axis) for differences in " (see color key shown in Figure 8). LEA distributions are
shown in solid lines whereas Kin1 distributions are shown in dashed lines.
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[m d�1] and v ¼ 0.01 [m d�1] ensembles. Because the
source is continuous and therefore the environmental con-
centration (C) dependence on time should be small to non-
existent (see Appendix B1), these results exemplify the
strong dependence of small-scale reactions in risk assess-
ment. A second finding of importance is the invariance of
LD and kinetic sorption with high-v ensembles (especially
the less stratified aquifer, purple lines, where equilibrium
conditions exist), suggesting a tipping point in variable
dominance when calculating risk.

4.5.2. Pulse Source Risk
[45] Figure 10a shows the probability of risk for a pulse

source with infinite Pe whereas Figure 10b shows the prob-
ability of risk for a finite Pe. For each Pe scenario, all
ensembles are dissimilar, and disequilibrium conditions
always exist. Thus, the use of DaGlobal for any of these
ensembles would be a poor predictor of equilibrium condi-
tions. Unlike the risk results given a continuous source
(section 4.5.1), changes in each variable (i.e., v, ", Pe, and
sorption scenario) show sensitivity to risk. In general, upper
bounds of risk increase with (1) an increase in v, (2) a
decrease in ", and (3) LEA ensembles in comparison to
Kin1 ensembles. Again, an exception persists in the case of
the less stratified aquifer, v ¼ 0.1 [m d�1] case (Figures 10a
and 10b, purple lines) where risk decreases at v ¼ 0.1
[m d�1]. While trends 1 and 2 are consistent with the
results for the continuous source (Figure 9), trend 3 is the
opposite. The time dependence associated with the pulse
source and with sorption kinetics diminishes the overall
effect of the peak concentration (see Figure 5), resulting in
lower probabilities of cancer risk in comparison to LEA
ensembles (Figure 10, differences in dashed versus solid
lines). Because mass is conserved in the simulation, the
decreased peak concentration results in a smearing of the
breakthrough curve and an increasing tail. We previously
noted greater Reff,Kin1 ensemble variances when compared
to the ensemble variances of Cpk,Kin/Cpk,tracer (Figure 7)
and that the additive LD-kinetic sorption effect yielded the
highest change in effective retardations (see �Reff,Tail sta-
tistics, Table 4). It is important to distinguish here that the
risk simulations are directly dependent on the value of C
(see discussion in Appendix B), and do not reflect the var-
iance in effective retardations directly. For all v, the effect
of LD decreases both LEA and Kin1 risk upper bound
values. Differences in " are present for finite and infinite
Pe, consistent with the results from the Reff,Disp metric
(Figure 8 and Table 4). These effects are small in compari-
son to the additive LD-kinetic sorption effect observed in
the continuous source analysis.

5. Conclusions
[46] The effects of kinetically sorbing solutes in stratified

aquifers were studied to assess realistic far-field ground-
water contamination scenarios. This study focused on cases
where variations in sedimentology and stratigraphy are
dominant factors in determining contaminant flow and
transport and ultimately risk assessment. Contamination of
a potable drinking water aquifer with mobile arsenic was
used as an example case study to investigate the effect of
differing hydrologic parameters such as: pulse versus con-
tinuous sources, differences in the anisotropy ratio, mean

groundwater velocity, kinetic or LEA sorption, and with
and without the inclusion of LD. An investigation of poten-
tial interplay (positive or negative feedbacks) between
multiple hydrogeologic parameters was conducted for both
kinetic and LEA ensembles to assess the validity and pre-
dictability of LEA through comparisons of stochastic
ensembles. A number of new metrics were utilized to
assess flow and transport behavior, and finally carcinogenic
human health risk was used as an endpoint of comparison
by utilizing a risk methodology previously developed
[Maxwell and Kastenberg, 1999; Siirila et al., 2012] where
risk is calculated using a nested Monte Carlo approach.
Principal findings include:

[47] 1. Using representative realizations of each ensem-
ble, large distribution of DaLocal were calculated, and could
be directly related to the distribution of v within the do-
main. For all ensembles, a portion of the DaLocal distribu-
tion falls within tracer, kinetic, and equilibrium regimes. In
contrast, all calculations of DaGlobal yielded equilibrium
conditions. For the hydrologic scenarios considered here,
peak concentration and risk results show DaGlobal is only
an accurate predictor given a continuous source without
LD. For all pulse sources (with and without LD), the peak
concentrations and risk results show DaGlobal is inaccurate
predictor of equilibrium conditions.

[48] 2. Parametric sensitivity to LD is sensitive to the
degree of aquifer stratification. To isolate the effect of LD
alone, a comparison of tracer (i.e., nonsorbing solutes) is
conducted with finite and infinite Pe. Results show the
driver in the effective retardation of dispersion is the differ-
ence in stratification, where the less stratified domain
exhibits little difference between finite and infinite Pe, and
the stratified domain exhibits nonnegligible differences
between finite and infinite Pe. These differences are appa-
rent in two subsets of results, where the solute is either
moved from a zone of high K to low K, and the plume is re-
tarded, or vice versa when the plume is accelerated. This
finding suggests the inclusion of LD (even if only on the
mm scale) will cause an effective retardation of the overall
plume, particularly for highly stratified domains. While it
has been previously been shown that the effect of LD affect
the second moment of the plume [Dagan and Fiori, 1997;
Fiori et al., 2002; Fiorotto and Caroni, 2002; Bellin et al.,
2004], we show the effect of LD either retards or excels the
first moment of the plume, represented here as the peak
time and concentration, a phenomena which has yet to be
reported in the literature.

[49] 3. An additive, or positive feedback, between LD
and kinetic sorption was found to be a controlling process
in accurately simulating solute behavior by adding an
effective tailing behavior as high as approximately 30 times
that of a LEA solute without LD. We speculate that the
effect is controlled at the high-low-K interface, where the
induced cell-based mixing creates particle jumps from
interconnected high-K regions into regions of low K and
vice versa. The time dependence associated with kinetic
sorption into and out of solution is magnified with LD,
yielding solute behavior unlike that of equilibrium simula-
tions when the effective retardation of kinetics is much less
than R. Here we show the LD-kinetic sorption effect retards
the first moment of the plume, a second interdependence
phenomenon not previously documented. This proposed
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conceptual model is valid given with respect to a number
of presented results including peak concentration distribu-
tions, effective retardations, and the variance of the connec-
tivity indicator.

[50] 4. Parametric sensitivity to aquifer channeling is
sensitive to the degree of aquifer stratification. While the
mean connectivity is independent of ", the variance in con-
nectivity is highly dependent on " where connectivity is
highly variable for stratified ensembles and more uniform
for less stratified ensembles. Either very fast (intercon-
nected high-K zones) or slow flow (interconnected low-K
zones) paths dominate flow fields of highly anisotropic
media. Connectivity variance is the greatest for ensembles
including LD and kinetic ensembles, further promoting the
results discussed in principal finding 3.

[51] 5. The magnitude and distribution of carcinogenic
human health risk is highly dependent on the source term
(pulse versus continuous). Equilibrium conditions exist for
the continuous source without LD and only for high mean
groundwater velocities with LD. All other hydrologic con-
ditions for the continuous source, and for all conditions for
the pulse source display disequilibrium conditions. While
the cancer risk estimates given the pulse source are small in
comparison to the continuous source, the demonstrated
parametric sensitivity is substantial, suggesting the feed-
backs between processes such as LD and kinetic sorption
are significant and should not be neglected in risk analysis
modeling or in groundwater solute transport problems.

[52] 6. In general, upper bounds of carcinogenic risk
increase with (1) an increase in v and (2) an increase in aq-
uifer stratification. The additive LD-kinetic sorption effect
relates to a higher upper bound of risk for the continuous
source and a lower upper bound of risk for the pulse source.
This opposition is due to the increased time dependence in
the pulse source scenario, and therefore the increased tail-
ing effect.

[53] These results suggest small-scale mechanisms such
as LD and kinetic sorption are controlling of not only solute
transport processes but also human health risk assessment.
Implications of this study are relevant in upcoming techno-
logical challenges in groundwater contaminant transport
with relevance in human health risk assessments.

[54] A limitation of this analysis is the investigation of
other intermediate spatial scales such as the length of the
well screen, the well capture zone, and also sensitivity in
the size of the source relative to the integral scale. Recent
work has begun to address this problem, and would be
complimentary to this work [de Barros and Nowak, 2010].
Although the magnitude of the horizontal integral scale
was investigated in this work, the model of spatial persist-
ence of Y was not explored for sensitivity. Because many
models of heterogeneity have been developed and com-
pared [e.g., Lee et al., 2007], another next step in this anal-
ysis would be a comparison of these models of Y. Second,
while parametric uncertainty was a central focus of this
study, model uncertainty was not addressed. Full reactive
transport models (i.e., including nonlinear reactions such as
dissolution and precipitation) are computationally expen-
sive, and at this discretization and spatial extent, are virtu-
ally impossible except with a very large number of
processors (i.e., on the order of millions) and with long
computational times [Hammond and Lichtner, 2010].

Future analyses include sensitivity at intermediate scales
and also an intermodel comparison of different techniques
to address the flow and transport feedbacks addressed here
as a method to bound model uncertainty.

Appendix A: Flow and Transport
[55] Far-field aquifer flow is simulated using the parallel,

three-dimensional groundwater model ParFlow, [Ashby
and Falgout, 1996; Jones and Woodward, 2001; Kollet
and Maxwell, 2006] utilizing a very efficient multigrid pre-
conditioned conjugate gradient solver. Perturbation theory
is used to characterize Y ¼ ln(K) as a mean and perturba-
tion [Rubin, 2003]:

Y ¼ hY i þ y0

hy0i ¼ 0

hy0i2 ¼ �2
ln ðKÞ

; (A1)

where bracketed terms, h i, denote the mean or expected
value and y0 is the perturbation from the mean Y. Three-
dimensional, spatially correlated random fields of K are
internally generated in ParFlow using the turning bands
algorithm [Tompson et al., 1989]. Steady state groundwater
flow is described by:

r � q ¼ �r � ðKrhÞ ¼ 0; (A2)

where h [m] is the hydraulic head and q [m d�1] is the
Darcy flux. Local groundwater velocity (v) [m d�1] is
defined by Darcy’s law as:

v ¼ �Krh

�
: (A3)

[56] Varying conditions of solute transport are simulated
using the Lagrangian particle tracking model SLIM-FAST
[Maxwell and Kastenberg, 1999; Maxwell et al., 2007;
Maxwell, 2010] where solute transport is governed by the
advection-dispersion equation [Fetter, 1999]:

@C

@t
¼ DL

@2C

@x2
þ DT

@2C

@y2
� v

@C

@x
� �b@C�

�@t
� i; (A4)

where DL [m2 d�1] and DT [m2 d�1] are the small-scale
(local), hydrodynamic longitudinal and transverse disper-
sion coefficients (respectively), and i is a source or sink
[mg m�3 d�1]. Contaminant mass balance is accounted via:

@

@t

�
�ðC þ C�Þ

�
¼ r � ð�D

!
� rCÞ � r � ð�vCÞ

� C
X

w
Qw�ðx� xwÞ�ðy� ywÞ�ðz� zwÞ;

(A5)

where Qw [m3 d�1] is the pumping rate of well w situated

at (xw, yw, zw) and D
!

is the hydrodynamic dispersion tensor
defined as:

D
!
¼ ð�T jvj þ D̂Þ�I þ ð�L � �T Þ

vv

jvj ; (A6)
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where �L [m] and �T [m] are longitudinal and transverse
dynamic dispersivity (respectively), D̂ [m2 d�1] is the
effective molecular diffusivity, and �I is the unit vector.
This case study utilizes �L and �T parameters (see Table 1)
to account for LD. A BiLinear velocity interpolation, was
found to be the most accurate method of solving for the
advection-correction and random-walk dispersion terms in
particle displacement [LaBolle et al., 1996], and is imple-
mented here. A full description of the equations used in the
particle-tracking model and further information on model
validation is described by Maxwell [2010].

Appendix B: Human Health Risk
[57] Adverse health effects to potentially exposed individ-

uals from a contaminant are quantified using a calculation
of an individual’s exposure in conjunction with a toxicity
dose. Risk is discussed in terms of a probability of carcino-
genic risk, although the increased risk of other noncancer
adverse health effects can easily be quantified using a simi-
lar methodology via the hazard index [Siirila et al., 2012].
The equations presented here are generally based on those
described in the US EPA Risk Assessment Guidance for
Superfund (RAGS) Volumes I and III [U.S.EPA, 1989,
2001], as well as other studies presented in the recent litera-
ture [Bogen and Spear, 1987; Mckone and Bogen, 1991,
1992; Maxwell et al., 1998; Maxwell and Kastenberg,
1999; Maxwell et al., 1999; Maxwell et al., 2008]. All cal-
culations are based on a baseline assessment of risk, where
remediation action is not considered. Monitoring or reme-
diation is not the purpose of this study but can easily be
implemented in the methodology presented here.

Appendix B1. Exposure
[58] Two exposure pathways are considered: ingestion of

tap water and dermal sorption through skin in washing,
bathing, etc. Arsenic is not a volatile contaminant accord-
ing to RAGS Volume 1, Part B [U.S.EPA, 1991], thus the
contribution from the inhalation pathway (i.e., vapor via
showering, washing, etc.) will therefore be much smaller
than the other pathways and is not modeled in this
case study. Exposure from the ingestion and dermal path-
ways are defined by the average daily dose (ADDingestion,
ADDdermal, respectively) [mgAs kg�1 d�1]:

ADDingestion ¼ C
IR

BW

� �
ED � EF

AT
; (B1)

ADDdermal ¼ C
SA

BW

� �
ED � EF

AT
Kp � fskin � EDshowerCF; (B2)

where C [mg L�1] is the maximum average well concentra-
tion of arsenic recorded over the exposure duration (ED)
[yrs], IN/BW [L kg d�1] is the ingestion rate of water per
unit body weight, AT [day] is the averaging time or
expected lifetime, EF [d yr�1] is the standard exposure fre-
quency, SA/BW [m2 kg�1] is the skin surface area in con-
tact with water per unit body weight, Kp [m h�1] is the
dermal permeability coefficient of the compound in water,
fskin [-] is the fraction of skin in contact with water,
EDshower [h d�1] is the shower exposure duration, and CF

is the unit conversion factor (1 � 10�3 L m�3). Standard
values suggested by RAGS for ED, EF, and AT are listed in
Table 2. Equations (B1) and (B2) are used to quantify risk
for chronic exposure (7–70 years) opposed to subchronic
exposure (2 weeks to 7 years) [U.S.EPA, 1989].

[59] Accurately quantifying the value of C is one of the
overall objectives of this paper, and is the motivation for
performing a parametric sensitivity analysis on the flow
and transport parameters in the case study. Evaluating C is
significant since concentration breakthrough curves for
each well effluent correspond to the concentrations that
will eventually reach the individual. C is linearly related to
exposure (see equations (B1) and (B2)), therefore augment-
ing the need to accurately quantify the range of expected C
values within an ensemble. C is calculated at each well (w),
and is averaged over the ED :

Cw ¼ MAX

XtþED

t

cwðtÞ

ED

2
64

3
75

t¼1

t¼0
;

(B3)

where cw [mg L�1] is the concentration at that well as a
function of time (t). Continuous sources will reach a maxi-
mum, steady state concentration that is constant over time
(and therefore a constant, maximum values over the ED).
Time-dependent parameters are therefore not expected to
change after the maximum concentration is reached for
contamination scenarios with a continuous source. Pulse
sources utilize the maximum of a running average of the
entire well breakthrough curve over the ED [e.g., see Max-
well et al., 1998, Figure 1]. Sensitivity between Cw and ED
has been investigated for ED ranging between 5 and 70
years, where smaller ED values are associated with higher
Cw characterization [Maxwell et al., 2008]. However,
because the ED value appears in the calculation for expo-
sure (i.e., equations (B1) and (B2)), smaller averaging
times also result less exposure and therefore in a smaller
probability of risk.

Appendix B2. Carcinogenic Toxicity
[60] Pathway specific carcinogenic toxicity values are

used to calculate an increased probability of an individual
developing cancer over a lifetime, generally under the
assumption that a linear relationship exists between expo-
sure to the contaminant and the risk of cancer. However,
the effect of nonlinear relationships [e.g., U.S.EPA, 2005]
have been briefly explored in the context of groundwater
risk assessment [de Barros et al., 2009]. For all carcino-
gens, any level of exposure will cause cellular proliferation
leading to a clinical state of disease with a finite probability
of an adverse health effect occurring, regardless of the ex-
posure dose. An extrapolation procedure is used for low-
level doses via a dose response curve, sometimes yielding
high levels of uncertainty at low-exposure doses [Cothern
et al., 1986]. While some studies suggest the linear extrapo-
lation is an appropriate assumption for most carcinogens
[Guess et al., 1977], it should be noted that this procedure
is somewhat controversial [Guess et al., 1977; Bogen and
Gold, 1997] especially if the studied exposure dose is a
nonhuman species [Wogan et al., 2004; Trosko and
Upham, 2005].
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[61] The primary parameter that quantifies carcinogenic
toxicity is the pathway specific cancer potency factor
(CPF) [kg d mg�1]. A tabulated value from the US EPA
Integrated Risk Information System (IRIS) database for the
arsenic ingestion pathway (CPFingestion) is used. As sug-
gested by the US EPA [U.S.EPA, 2004], toxicity values for
the dermal pathway are derived by an extrapolation of oral
toxicity values. This relationship is defined by utilizing per-
centages of gastrointestinal absorption (ABSGI [-]) and is
established on the theory that ingestion is based on the
quantity of the contaminant administered and therefore
directly relational to the quantity of the contaminant
absorbed:

Riskdermal

Riskingestion
/ 1

ABSGI
; (B4)

where the cancer potency factor for the dermal pathway
(CPFdermal) [kg d mg�1] is defined by:

CPFdermal ¼
CPFingestion

ABSGI
: (B5)

For those contaminants whose ABSGI are undocumented or
are not scientifically defensible, a (conservative) value of
100% is suggested. An arsenic ABSGI value of 95% is used
here based on the work of Bettley and O’Shea [1975].
Toxicity values used in this case study are listed in Table 2.

Appendix B3. Probability of Risk
[62] Human health risk of an individual incurring cancer

over a lifetime of exposure is calculated by combining the
exposure and toxicity parameters (discussed in sections B1
and B2, respectively) through pathway i :

Risk ¼ 1� exp �CPFi�ADDi�f �i ; (B6)

where f �i is a pathway and contaminant specific metabo-
lized fraction of contaminant, developed using a pharmaco-
kinetic (PBPK) model to account for decay products of the
contaminant that may be present once consumed [Mckone
and Bogen, 1992]. Here we assume a value of f �i ¼ 1 for ar-
senic. Overall risk is then quantified as the summation for n
pathways:

Risk ¼
Xi¼n

i¼1

Riski: (B7)

Remediation Action Levels (RALs) are defined as the
probability risk value at which remediation is warranted to
prevent cancer. RAL values typically fall between 10�4 [-]
and 10�6. Remediation is often warranted if risk exceeds
the upper level (10�4 [-]), corresponding to a probability of
1 in 10,000 individuals incurring cancer. Remediation is of-
ten not warranted if risk does not exceed the lower level
(10�6 [-]), corresponding to a probability of 1 in 1,000,000
individuals incurring cancer. The latter is often referred to
as the de minimis action level, or negligible risk that is too
small to be of societal concern and is otherwise ‘‘virtually
safe.’’

Appendix B4. Uncertainty and Variability
[63] Risk of an individual incurring cancer over a lifetime

is treated using a probabilistic risk assessment (PRA), ex-
plicitly differentiating between uncertain and variable
parameters. Here we define uncertainty as a lack of knowl-
edge or measurement error, primarily associated with envi-
ronmental parameters (i.e., hydrologic flow field, primarily
K). In contrast, we define variability as natural diversity, of-
ten associated with interindividual differences (i.e., physio-
logical and exposure differences between an adult and a
child). For the sake of simplicity, we choose to distinguish
parameters as either uncertain or variable, although in real-
ity some parameters may be both (for example, variability
in body weight and uncertainty in the measurement accu-
racy of the scale). Another distinction is that uncertainty
can be reduced, whereas variability can only be further
characterized [Morgan et al., 1990; Mckone and Bogen,
1992; Finley et al., 1994; Maxwell et al., 1998; Maxwell
and Kastenberg, 1999; Maxwell et al., 1999; Daniels
et al., 2000]. Here we adopt terminology introduced previ-
ously [e.g., Maxwell et al., 1998] and term fractiles of vari-
ability as subpopulations within the overall population,
where the 95th and/or 99th fractiles of variability are often
used to describe the maximally exposed (i.e., most sensitive
to contamination) individual. We discuss percentiles of
uncertainty as scientific confidence, where the 50th percen-
tile of uncertainty is often used to describe the ‘‘best scien-
tific guess’’. Benefits of calculating risk in terms of joint
uncertainty and variability (JUV) include the following:

[64] 1. A tool for decision makers to generate relation-
ships that differentiate between individual sensitivity, risk,
and scientific uncertainty.

[65] 2. The ability to predict a change (or potential
decrease) in individual risk as a function of reduction of
uncertainty or measurement error.

[66] A nested (or two-step) Monte Carlo approach is used
to address JUV. Discrete distributions are utilized for
uncertain (environmental well concentrations, C) and vari-
able (individual exposure variables related to physiology or
time, see e.g., equations (B1) and (B2)) parameters. For
one sampling of the uncertain distribution (one C value
given one realization of flow and transport), a complete
sampling of all variability parameters distributions (expo-
sure for all individuals within a population) is conducted.
This process can be conceptualized as an inner (variable)
and outer (uncertain loop), where a complete sampling of
the inner loop is repeated for each realization of the outer
loop [see e.g., Maxwell et al., 1999, Plate 1; Siirila et al.,
2012, Figure 2]. This process yields a 2-D surface of risk,
where fractiles of variability and percentiles of uncertainty
can easily be discerned. Slices along this surface, usually at
fractiles of interest such as the 50th fractile (average exposed
individual) or 99th fractile (maximally exposed individual)
provide meaningful comparisons of differences in individual
sensitivity and cumulative scientific uncertainty.

Notation

K hydraulic conductivity, m d�1.
xd, yd, zd domain size in the x, y, and z directions.

Y natural logarithm of hydraulic conductivity,
m d�1.
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Kg geometric mean of hydraulic conductivity,
m d�1.

�2
Y variance of hydraulic conductivity.
� separation distance, m.
�h horizontal correlation length, m.
�v vertical correlation length, m.
" anisotropy ratio.
v local groundwater velocity.

KD partition coefficient, L kg�1.
C aqueous concentration in solution, mg kg�1.

C� sorbed concentration in the solid phase,
mg m�3.

kf forward sorption rate, L d�1.
kr reverse sorption rate, kg d�1.
R solute retardation.

RLEA solute retardation from equilibrium sorption.
Rkin solute retardation from kinetic sorption.
� porosity.
�b bulk density of the porous medium, kg m�3.

tadv advection time, day.
taq aqueous time, day.
ts sorbed time, day.

RN random number from a normal distribution.
tparticle particle time, day.

p particle number.
Pe nondimensional Péclet number.
dx cell size parallel to groundwater flow, m.
v
!

cell based local velocity vector, m d�1.
vx, vy, vz directional components of v

!
[m d�1].

DaLocal local Damköhler number.
DaGlobal global Damköhler number.

tpk peak well breakthrough time, day.
Cpk/C0 normalized peak well breakthrough concen-

tration.
nw number of wells.
nr number of realizations.

Reff,LEA effective retardation from equilibrium sorp-
tion.

Reff,kin effective retardation from kinetic sorption.
Reff,Disp effective retardation from local dispersion.

�Reff,Tail effective retardation from local dispersion
and kinetic sorption.

CI connectivity indicator.
t5 time at which 5% of particle mass is present

at the well, day.
t50 time at which 50% of particle mass is present

at the well, day.
�x, �y, �z cell discretization in the x, y, and z direc-

tions, m.
nx, ny, nz number of cells in the x, y, and z directions.

tarr,v dimensionless arrival time.
Qregional,v regional volumetric flux, m3 d�1.

vparticle particle velocity, m d�1.

�Reff;Tail mean effective retardation of tailing.
��Reff;Tail standard deviation of effective retardation of

tailing.
CI average connectivity indicator.
�CI standard deviation of the connectivity

indicator.
ADDingestion exposure from ingestion, mgAs kg�1 d�1.
ADDdermal exposure from dermal sorption, mgAs kg�1 d�1.

C maximum average well concentration,
mg L�1.

ED exposure duration, years.
IN/BW ingestion rate of water per unit body weight,

L kg d�1.
AT averaging time, day.
EF exposure frequency, d yr�1.

SA/BW skin surface area in contact with water per
unit body weight, m2 kg�1.

Kp dermal permeability coefficient in water,
m h�1.

fskin fraction of skin in contact with water.
EDshower shower exposure duration, h d�1.

CF conversion factor, L m�3.
cw concentration at the well as a function of

time, mg L�1.
ABSGI gastrointenstinal absorption.

CPF cancer potency factor, kg d mg�1.
CPFingestion cancer potency factor for the ingestion path-

way, kg d mg�1.
CPFdermal cancer potency factor for the dermal path-

way, kg d mg�1.
f � metabolized fraction of contaminant.
y0 perturbation of Y, m d�1.
h hydraulic head, m.
q Darcy flux, m d�1.

DL local hydrodynamic longitudinal dispersion
coefficient, m2 d�1.

DT local hydrodynamic transverse dispersion
coefficient, m2 d�1.
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Andri�cević, R., J. Daniels, and R. Jacobson (1994), Radionuclide migration
using a travel time transport approach and its application in risk analysis,
J. Hydrol., 163(1–2), 125.

Ashby, S., and R. Falgout (1996), A parallel multigrid preconditioned con-
jugate gradient algorithm for groundwater flow simulations, Nucl. Sci.
Eng., 124(1), 145.

Bahr, J. M., and J. Rubin (1987), Direct comparison of kinetic and local
equilibrium formulations for solute transport affected by surface reac-
tions, Water Resour. Res., 23(3), 438.

Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival
times for the inference of hydrogeological parameters, Water Resour.
Res., 40, W07401, doi:10.1029/2003WR002179.

W04527 SIIRILA AND MAXWELL: RISK IMPLICATIONS OF KINETIC SOLUTES W04527

21 of 23



Bellin, A., and D. Tonina (2007), Probability density function of non-reac-
tive solute concentration in heterogeneous porous formations, J. Contam.
Hydrol., 94(1–2), 109.

Bellin, A., A. Lawrence, and Y. Rubin (2004), Models of sub-grid variabili-
ty in numerical simulations of solute transport in heterogeneous porous
formations: Three-dimensional flow and effect of pore-scale dispersion,
Stoch. Environ. Res. Risk Assess., 18(1), 31.

Benekos, I., C. Shoemaker, and J. Stedinger (2007), Probabilistic risk and
uncertainty analysis for bioremediation of four chlorinated ethenes in
groundwater, Stoch. Environ. Res. Risk Assess., 21(4), 375.

Berg, M., H. Tran, T. Nguyen, H. Pham, R. Schertenleib, and W. Giger
(2001), Arsenic contamination of groundwater and drinking water in
Vietnam: A human health threat, Environ. Sci. Technol., 35(13), 2621.

Bettley, F., and J. O’Shea (1975), The absorption of arsenic and its relation
to carcinoma, Br. J. Dermatol., 92(5), 563.

Bianchi, M., C. Zheng, C. Wilson, G. R. Tick, G. Liu, and S. M. Gorelick
(2011), Spatial connectivity in a highly heterogeneous aquifer: From
cores to preferential flow paths, Water Resour. Res., 47, W05524,
doi:10.1029/2009WR008966.

Bogen, K., and L. Gold (1997), Trichloroethylene cancer risk: Simplified
calculation of PBPK-based MCLs for cytotoxic end points� 1, Regul.
Toxicol. Pharm., 25(1), 26.

Bogen, K. T., and R. C. Spear (1987), Integrating uncertainty and inter-
individual variability in environmental risk assessment, Risk Anal.,
7(4), 427.

Bolster, D., and D. Tartakovsky (2008), Probabilistic risk analysis of build-
ing contamination, Indoor Air, 18(5), 351.

Bolster, D., M. Barahona, M. Dentz, D. Fernandez-Garcia, X. Sanchez-Vila,
P. Trinchero, C. Valhondo, and D. M. Tartakovsky (2009), Probabilistic
risk analysis of groundwater remediation strategies, Water Resour. Res.,
45, W06413, doi:10.1029/2008WR007551.

Brusseau, M. L., and R. Srivastava (1997), Nonideal transport of reac-
tive solutes in heterogeneous porous media 2. Quantitative analysis of
the Borden natural-gradient field experiment, J. Contam. Hydrol.,
28(1–2), 115.

Chen, C., C. Chen, M. Wu, and T. Kuo (1992), Cancer potential in liver,
lung, bladder and kidney due to ingested inorganic arsenic in drinking
water, Br. J. Cancer, 66(5), 888.

Chin, D. A., and T. Wang (1992), An investigation of the validity of first-
order stochastic dispersion theories in isotropie porous media, Water
Resour. Res., 28(6), 1531.

Christakos, G. (1992), Random Field Models in Earth Sciences, Academic
Press, San Diego, Calif.

Cothern, C. R., W. A. Coniglio, and W. L. Marcus (1986), Development of
quantitative estimates of uncertainty in environmental risk assessments
when the scientific data base is inadequate, Environ. Int., 12(6), 643.

Cvetkovic, V., and G. Dagan (1994), Transport of kinetically sorbing solute
by steady random velocity in heterogeneous porous formations, J. Fluid.
Mech., 265, 189.

Cvetkovic, V., and A. Shapiro (1990), Mass arrival of sorptive solute in het-
erogeneous porous media, Water Resour. Res., 26(9), 2057.

Dagan, G. (1982), Stochastic modeling of groundwater flow by uncondi-
tional and conditional probabilities: 2. The solute transport, Water
Resour. Res., 18(4), 835.

Dagan, G., and V. Cvetkovic (1993), Spatial moments of a kinetically sorbing
solute plume in a heterogeneous aquifer, Water Resour. Res., 29(12), 4053.

Dagan, G., and A. Fiori (1997), The influence of pore-scale dispersion on
concentration statistical moments in transport through heterogeneous
aquifers, Water Resour. Res., 33(7), 1595.

Daniels, J., K. Bogen, and L. Hall (2000), Analysis of uncertainty and vari-
ability in exposure to characterize risk: Case study involving trichloro-
ethylene groundwater contamination at Beale Air Force Base in
California, Water Air Soil Pollut., 123(1), 273.

Darland, J. E., and W. P. Inskeep (1997), Effects of pore water velocity on
the transport of arsenate, Environ. Sci. Technol., 31(3), 704.

de Barros, F. P. J., and W. Nowak (2010), On the link between contaminant
source release conditions and plume prediction uncertainty, J. Contam.
Hydrol., 116(1), 24.

de Barros, F., and Y. Rubin (2008), A risk-driven approach for subsurface
site characterization, Water Resour. Res., 44, W01414, doi:10.1029/
2007WR006081.

de Barros, F. P. J., Y. Rubin, and R. M. Maxwell (2009), The concept of
comparative information yield curves and its application to risk-based
site characterization, Water Resour. Res., 45, W06401, doi:10.1029/
2008WR007324.

Espinoza, C., and A. J. Valocchi (1997), Stochastic analysis of one-dimen-
sional transport of kinetically adsorbing solutes in chemically heteroge-
neous aquifers, Water Resour. Res., 33(11), 2429.

Fernandez-Garcia, D., D. Bolster, X. Sanchez-Vila, and D. M. Tartakovsky
(2012), A Bayesian approach to integrate temporal data into probabilistic
risk analysis of monitored NAPL remediation, Adv. Water Resour., 36,
108–120, doi:10.1016/j.advwatres.2011.07.001.

Fetter, C. (1999), Contaminant Hydrogeology, Prentice Hall, Upper Saddle
River, N. J.

Finley, B., D. Proctor, P. Scott, N. Harrington, D. Paustenbach, and P. Price
(1994), Recommended distributions for exposure factors frequently used
in health risk assessment, Risk Anal., 14(4), 533.

Fiori, A. (1996), Finite Peclet extensions of Dagan’s solutions to
transport in anisotropic heterogeneous formations, Water Resour. Res.,
32(1), 193.

Fiori, A., and A. Bellin (1999), Non-ergodic transport of kinetically sorbing
solutes, J. Contam. Hydrol., 40(3), 201.

Fiori, A., S. Berglund, V. Cvetkovic, and G. Dagan (2002), A first-order
analysis of solute flux statistics in aquifers: The combined effect of pore-
scale dispersion, sampling, and linear sorption kinetics, Water Resour.
Res., 38(8), 1137, doi:10.1029/2001WR000678.

Fiorotto, V., and E. Caroni (2002), Solute concentration statistics in hetero-
geneous aquifers for finite Peclet values, Transp. Porous Media, 48(3),
331.

Green, C. T., J. K. Böhlke, B. A. Bekins, and S. P. Phillips (2010), Mixing
effects on apparent reaction rates and isotope fractionation during deni-
trification in a heterogeneous aquifer, Water Resour. Res., 46, W08525,
doi:10.1029/2009WR008903.

Guess, H., K. Crump, and R. Peto (1977), Uncertainty estimates for low-
dose-rate extrapolations of animal carcinogenicity data, Cancer Re.,
37(10), 3475.

Guo, H. R., H. S. Chiang, H. Hu, S. R. Lipsitz, and R. R. Monson (1997),
Arsenic in drinking water and incidence of urinary cancers, Epidemiol-
ogy, 8, 545.

Hammond, G. E., and P. C. Lichtner (2010), Field-scale model for the natural
attenuation of uranium at the Hanford 300 Area using high-performance
computing, Water Resour. Res. 46, W09527, doi:10.1029/2009
WR008819.
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